
Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 1

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

(AUTONOMOUS)

Recognized by AICTE, NBA, NAAC and

Govt. of A.P. Affiliated by J.N.T.U.A., ANANTAPURAMU

R.V.S. Nagar, Tirupati Road, CHITTOOR- 517127

DEPARTMENT

 OF

ELECTRONICS AND COMMUNICATION ENGINEERING

Microprocessors and Microcontrollers Lab

(20AEC27)

Prepared by

Dr.D.SRIHARI M.E, Ph.D

Department of ECE

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 2

LIST OF EXPERIMENTS

(Minimum 12 experiments to be conducted)

PART-A

8086 Microprocessor Programs using MASM/TASM Software:

(Minimum 07 experiments to be conducted)

By using Arithmetic & Logical instructions:

1. Study of MASM/TASM Software.

2. ALP s (8086) for addition and subtraction.

3. ALP s (8086) for multiplication and Division.

4. ALP s (8086) to determine LCM and GCD of two 16-bit numbers.

5. ALP s (8086) to evaluate arithmetic expressions.

6. ALP s (8086) for sorting and searching.

7. Logic operations - Shift and rotate - Converting packed BCD to unpacked BCD, BCD to

 ASCII conversion.

By using String Instructions:

8. String operations - Move block, Reverse string, String comparison, Length of string.

9. ALP s (8086) for

 i) DOS interrupts

 ii) BIOS interrupts

PART-B

(Minimum 02 experiments to be conducted)

Interfacing Programs using 8086:

1. ALP s (8086) for generating ramp wave, triangular wave, and stair case wave forms using

 DAC.

2. ALP (8086) for traffic light controller.

3. ALP (8086) for stepper motor control.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 3

PART-C

(Minimum 03 Experiments to be conducted)

8051 Microcontroller:

1. a) ALP (8051) to determine the addition.

b) ALP (8051) to determine the subtraction.

2. a) ALP (8051) to determine the largest of N bytes.

b) ALP (8051) to determine the smallest of N bytes.

3. a) ALP (8051) to multiply a 16-bit number by an 8-bit number.

 b) ALP (8051) to find square root of an 8-bit number.

 4. a) ALP (8051) to determine LCM of two 8- bit numbers.

 b) ALP (8051) to determine GCD of two 8- bit numbers.

 5. a) ALP (8051) to generate even numbers.

 b) ALP (8051) to generate odd numbers.

 6. Timer/Counters (8051) in different modes.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 4

PART-A

S.NO DATE NAME OF THE EXPERIMENT
SIGNATURE OF

THE FACULTY

1 Study of MASM/TASM Software

2

 ALPs (8086) for sum of „n‟8 bit numbers and

Multi word addition.

 ALPs (8086) for subtraction.

3
 ALPs (8086) for multiplication.

 ALPs (8086) for Division.

4

 ALPs (8086) to determine LCM of two 16bit

numbers

 ALPs (8086) to determine GCD of two 16-bit

numbers.

5 ALPs (8086) to evaluate arithmetic expressions

6
 ALPs (8086) for sorting.

 ALPs (8086) for searching.

7

 Logic operation- Converting packed BCD to

unpacked BCD.

 Logic operation- BCD to ASCII conversion.

8
 String operations - Move block, Reverse string,

 String comparison, Length of string

9
 ALP s (8086) for i) DOS Interrupts

 ii) BIOS Interrupts

PART-B

1

 ALPs (8086) for generating ramp wave, triangular

wave forms using DAC.

 ALPs (8086) for generating stair case wave forms

using DAC.

2 ALP (8086) for traffic light controller

3 ALP (8086) for stepper motor control.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 5

PART-C

S.NO DATE NAME OF THE EXPERIMENT
SIGNATURE OF

THE FACULTY

1

 ALP (8051) to determine the addition.

 ALP (8051) to determine the subtraction.

2
 ALP (8051) to determine the largest of N bytes.

 ALP (8051) to determine the smallest of N bytes.

3

 ALP (8051) to multiply a 16-bit number by an 8-bit

number.

 ALP (8051) to find square root of an 8-bit number

4

 ALP (8051) to determine LCM of two 8- bit

numbers

 ALP (8051) to determine GCD of two 8- bit

numbers.

5
 ALP (8051) to generate even numbers

 ALP (8051) to generate odd numbers.

6

 Timer/Counters (8051) in different modes.

Mode 0 and Mode 1 operations

 Mode 2 and mode 3 operations

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 6

INDEX

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 7

PART-A

(Minimum 07 experiments to be conducted)

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 8

Date: Exp. No. – 1

Study of MASM/TASM Software

Turbo-Assembler (TASM)/ MASM (Macro Assembler)

Turbo Assembler (sometimes shortened to the name of the executable, TASM) is an assembler

for software development published by Borland in 1989. MASM, It is an assembler that brings

high-level language features to assembly language programming. It translates a single multi-

argument source line o code into a sequence of machine instructions. TASM is an interactive

means for assembling linking and debugging assembly language programs. Turbo- Assembler

(TASM) is an integrated software package written by Borland Corporation for professional

software developers.. It consists of an editor, an assembler, a linker and a debugger.

Assembling

The assembler is used to convert the assembly language instructions into machine code. It is used

immediately after writing the Assembly Language program. The assembler starts by checking the

syntax, or validity of the structure, of each instruction in the source file. If any errors are found, the

assembler displays a report on these errors along with a brief explanation of their nature. However,

if the program does not contain any errors, the assembler produces an object file that has the same

name as the original file but with the “obj” extension.

Linking

The linker is used to convert the object file to an executable file. The executable file is the final set

of machine code instructions that can directly be executed by the microprocessor. It is different

than the object file in the sense that it is self-contained and re-locatable. An object file may

represent one segment of a long program. This segment cannot operate by itself, and must be

integrated with other object files representing the rest of the program, in order to produce the final

self-contained executable file. In addition to the executable file, the linker can also generate a

special file called the map file. This file contains information about the start, end, and the length of

the stack, code, and data segments. It also lists the entry point of the program.

 Executing

The executable file contains the machine language code. It can be loaded in the RAM and be

executed by the microprocessor simply by typing, from the DOS prompt, Debug Filename.exe. If

the program produces an output on the screen, or a sequence of control signals to control a piece of

hardware, the effect should be noticed almost instantly.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 9

 All the steps and commands used to edit, assemble link and run a program using TASM is as

follows:

1. Open TASM folder and click on DPMIRES icon and type EDIT to open the editor window.

2. Type the assembly language program and save the program as FILENAME.ASM.

3. Go to file menu and click on exit to move to DOS prompt.

4. Type TASM FILENAME.ASM command to assemble the program.

5. If any errors in the program use EDIT FILENAME.ASM command.

5. Type TLINK FILENAME command to link the file to turbo assembler.

6. Type DEBUG FILENAME.EXE to place the exe file in memory.

7. Type „R‟ in the DOS prompt to see the register contents of 8086.

8. Type „T‟ in the DOS prompt to observe the register contents used in the program, instruction by

instruction until end of the program.

9. Type „G‟ in the DOS prompt to run the entire program at a time.(if you use INT 03H in

program)

10. To observe the results available in memory locations type E 16-bit address after executing the

program.

The DOS “Debug” program is an example of simple debugger that comes with MS DOS. Hence, it

is available on any PC. It was initially designed to give the user the capability to trace logical

errors in executable files. It allows the user to take an existing executable file and unassembled it,

i.e. convert it to assembly language. Also it allows the user to write assembly language instructions

directly, and then convert them to machine language.

DOS commands:

R [register] It allows to show a contents of registers in the hexadecimal format;

SYNTAX: R [register]

T [trace] It allows to trace execution of one instruction;

SYNTAX: T [address] [value]

P [proceed] It allows to execute a group of instructions;

SYNTAX: P [address] [number]

Q [quit] It allows to quite a of DEBUG work;

SYNTAX: Q

E [enter] It allows to insert data into the memory, beginning from the given address;

SYNTAX: E [address]

D [dump] It allows to show the contents of memory in the hexadecimal format;

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 10

SYNTAX: D [range]

G [go] It allows to start execution of the given program in the memory;

SYNTAX: G [address]

A [assemble] It allows to transfer instructions, which are written in symbols into the machinery

codes;

SYNTAX: A [address]

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 11

Date: Exp. No. – 2

ALPs (8086) for addition and subtraction

(A) Sum of given ‘n’ 8-bit numbers

AIM: To find out the sum of given „n‟ 8-bit numbers.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model.

2. Define the data segment with required variables.

3. Assign code segment.

4. Initialize DS register with the starting address of data segment.

5. Clear the BX & AX registers.

6. Take the count value into CL register.

7. Copy the offset address of num list into SI register

8. Move the content of SI to BL register

9. Add the content of AX and BX register

10. Increment the content of SI by one.

11. Decrement the content of CL by one

12. Perform repeated addition till the count value becomes zero. (Repeat from step 7)

13. Terminate the program by using breakpoint interrupt.

14. End

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 12

PROGRAM:

 . MODEL SMALL

. DATA

COUNT DB 06h

NUMLIST DB 10h,22h,33h,44h,55h,66h

. CODE

MOV AX, @DATA

MOV DS, AX

XOR BX, BX

XOR AX, AX

MOV CL, COUNT

MOV SI, OFFSET NUMLIST

AGAIN: MOV BL, [SI]

 ADD AX, BX

 INC SI

 DEC CL

 JNZ AGAIN

 INT 03H

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 13

(B) Multi word Addition

AIM: To perform the addition of two 32-bit numbers.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program

2. Assign Data segment

3. Assign Code segment

 4. LSW of 1
st
 double word is moved to AX register.

 5. LSW of 2
nd

 double word is moved to BX register.

 6. Add the contents of AX and BX registers and the result is stored in AX register.

 7. Copy the LSW of result present in AX register into CX register.

 8. MSW of 1
st
 double word is moved to AX register.

 9. MSW of 2
nd

 double word is moved to BX register.

 10. Add the contents of AX and BX registers along with carry (obtained from previous

 addition) and the result is stored in AX register.

 11. Copy the MSW of the result present in AX register into DX register.

 12. Terminate the program by using breakpoint interrupt.

 13. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 14

PROGRAM:

 . MODEL SMALL

. DATA

. CODE

MOV AX, 0F000h

MOV BX, 1000h

ADD AX, BX

MOV CX, AX

MOV AX, 5678h

MOV BX, 1234h

ADC AX, BX

MOV DX, AX

INT 03H

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 15

(C) Multi Word Subtraction

AIM: To perform the subtraction of two 32-bit numbers.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program

2. Assign Data segment

3. Assign Code segment

 4. LSW of 1
st
 double word is moved to AX register.

 5. LSW of 2
nd

 double word is moved to BX register.

 6. Subtract the contents of AX and BX registers and the result is stored in AX register.

 7. Copy the LSW of result present in AX register into CX register.

 8. MSW of 1
st
 double word is moved to AX register.

 9. MSW of 2
nd

 double word is moved to BX register.

 10. Subtract the contents of AX and BX registers along with borrow (obtained from

 Previous subtract) and the result is stored in AX register.

 11. Copy the MSW of the result present in AX register into DX register.

 12. Terminate the program by using breakpoint interrupt.

 13. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 16

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, 0111h

MOV BX, 1000h

SUB AX, BX

MOV CX, AX

MOV AX, 5678h

MOV BX, 1234h

SBB AX, BX

MOV DX, AX

INT 03h

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 17

Date: Exp. No.- 3

ALPs (8086) for Multiplication and Division

(i) Multiplication of two unsigned 16-bit numbers

AIM: To perform the multiplication of two unsigned 16-bit numbers.

APPARATUS: system with TASM software.

ALGORITHM:

 1. Assign Model to the program

 2. Assign Data segment

 3. Assign Code segment

 4. Move the first 16 bit unsigned number into AX register.

 5. Move the second 16 bit unsigned into BX register.

 6. Perform unsigned multiplication between the values stored in AX and BX, observe the

 MSW of the result present in DX and LSW in AX

 7. Terminate the program by using breakpoint interrupt.

 8. End

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, 1234h

MOV BX, 1234h

MUL BX

INT 03h

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 18

(ii) Multiplication of two signed 16-bit numbers

AIM: To perform the multiplication of two signed 16-bit numbers.

APPARATUS: system with TASM software.

ALGORITHM:

 1. Assign Model to the program

 2. Assign Data segment

 3. Assign Code segment

 4. Move the first 16 bit signed number into AX register.

 5. Move the second 16 bit signed number into BX register.

 6. Perform signed multiplication between the values stored in AX and BX, observe the

 MSW of the result present in DX and LSW in AX

 7. Terminate the program by using breakpoint interrupt.

 8. End

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, 8000h Negative number

MOV BX, 2000h Positive number

IMUL BX

INT 03h

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 19

(iii) Division of 16-bit/8-bit number (unsigned)

AIM: To perform division of 16-bit by 08 bit number.

APPARATUS: system with TASM software.

ALGORITHM:

 1. Assign Model to the program

 2. Assign Data segment

 3. Assign Code segment

 4. Move the 16 bit dividend into AX register.

 5. Move the 8 bit divisor into BL register.

 6. Perform division between the values stored in AX and BL, observe the quotient in AL

 and remainder in AH.

 7. Terminate the program by using breakpoint interrupt

 8. End

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, 1234h

MOV BL, 58h

DIV BL

INT 03h

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 20

(iv) Division of 16-bit/8-bit number (signed)

AIM: To perform the 16 bit /8 bit division of two signed numbers.

APPARATUS: system with TASM software.

ALGORITHM:

 1. Assign Model to the program

 2. Assign Data segment

 3. Assign Code segment

 4. Move the 16 bit dividend into AX register.

 5. Move the 8 bit divisor into BL register.

 6. Perform division between the values stored in AX and BL, observe the quotient in AL

 and remainder in AH.

 7. Terminate the program by using breakpoint interrupt

 8. End

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, -0002h

MOV BL, 80h

IDIV BL

INT 03h

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 21

(v) Division of 32-bit/16-bit number (unsigned)

AIM: To perform the division of 32-bit by 16 bit number.

APPARATUS: system with TASM software.

ALGORITHM:

 1. Assign Model to the program

 2. Assign Data segment

 3. Assign Code segment

 4. Move the LSW of dividend into AX register.

 5. Move the MSW of dividend into DX register.

 6. Move the 16 bit divisor into BX register.

 7. Perform division between the values stored in DX: AX and BX, observe the quotient in

 AX and remainder in DX.

 8. Terminate the program by using Break Point Interrupt.

 9. End

PROGRAM:

. MODEL SMALL

. DATA

. CODE

MOV AX, 2786h (LSW of dividend)

MOV DX, 2334h (MSW of dividend)

MOV BX, 3552h (divisor)

DIV BX

INT 03h

END

INPUT 1:

INPUT 2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 22

 Date: Exp. No. – 4

 ALPs (8086) for GCD and LCM of two 16-bit numbers

(A) ALP (8086) to determine GCD of two 16-bit binary numbers.

AIM: To find out GCD of two 16-bit binary numbers

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Take 1
st
 number into AX register and 2

nd
 number into BX register.

6. Compare the content of AX and BX, if equal AX content is the final result else perform the

 subtraction until AX and BX content becomes equal.

7. Copy the result in AX to variable name GCD in data segment.

8. Terminate the program by using Break Point Interrupt.

9. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 23

PROGRAM:

. MODEL SMALL

. DATA

NUM1 DW 003Ch

NUM2 DW 000Fh

GCD DW 01h DUP (?)

. CODE

MOV AX, @DATA

MOV DS, AX

MOV AX, NUM1

MOV BX, NUM2

 BACK: CMP AX, BX

JE RESULT

JNC AHEAD

SUB BX, AX

JMP BACK

 AHEAD: SUB AX, BX

JMP BACK

 RESULT: MOV GCD, AX

INT 03h

END

INPUT1:

INPUT2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 24

(B) ALP (8086) to determine LCM of two 16-bit numbers.

 AIM: To find out LCM of two 16-bit numbers

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Take 1
st
 number into CX register and 2

nd
 number into DX register.

6. Copy the content of CX and DX into Ax and BX, if equal AX content is the final result.

7. If AX is less than BX then add content of BX and DX else add the content of AX and CX.

8. Repeat the step5 and step6 until content of AX and BX equal.

9. Copy the result in AX to variable name LCM in data segment.

10. Terminate the program by using Break Point Interrupt.

11. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 25

PROGRAM:

. MODEL SMALL

. DATA

NUM1 DW 003Ch

NUM2 DW 000Fh

LCM DW 01h DUP (?)

. CODE

MOV AX, @DATA

MOV DS, AX

MOV AX, NUM1

MOV BX, NUM2

MOV CX, AX

MOV DX, BX

 BACK: CMP AX, BX

JE RESULT

JNC AHEAD

ADD AX, CX

JMP BACK

 AHEAD: ADD BX, DX

JMP BACK

 RESULT: MOV LCM, AX

INT 03h

END

INPUT1:

INPUT2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 26

Date: Exp. No – 5

ALP (8086) to evaluate arithmetic expressions

 AIM: To evaluate a given arithmetic expression f = (a+b) (b+c) (c+d)

 (a+b+c+d)

APPARATUS: System with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment through AX register.

5. Copy the variable data a & b into AL & BL and perform the addition between AL & BL.

6. Initialize the starting address of result temporarily with SI register and store the result 1200h

 location from the AL register.

7. Copy the variable data b & c into AL & BL and perform the addition between AL & BL.

8. Increment the SI register and store the result 1201h location from the AL register.

9. Copy the variable data c & d into AL & BL and perform the addition between AL & BL.

10. Increment the SI register and store the result 1202h location from the AL register.

11. Copy the variable data a into AL register and perform the addition between AL registers & b.

12. Add the content of AL and c then d to the AL register.

13. Copy the result into BL register from AL register & move the content in 1200h location to AL.

14. Multiply the content in AL with content available in 1201h location then multiply with content

 in 1202h location perform the division.

15. Terminate the program by using Break Point Interrupt.

16. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 27

PROGRAM:

. MODEL SMALL

. DATA

A DB 01H

B DB 02H

C DB 03H

D DB 04H

. CODE

MOV AX, @DATA

MOV DS, AX

XOR AX, AX

MOV AL, A

MOV BL, B

ADD AL, BL

MOV SI, 1200H

MOV [SI], AL

MOV AL, B

MOV BL, C

ADD AL, BL

INC SI

MOV [SI], AL

MOV AL, C

MOV BL, D

ADD AL, BL

INC SI

MOV [SI], AL

MOV AL, A

ADD AL, B

ADD AL, C

ADD AL, D

MOV CL, AL

XOR AX, AX

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 28

MOV AL, [SI]

MOV BL, [SI-1]

MUL BL

MOV BL, [SI-2]

MUL BL

MOV BL, CL

DIV BL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 29

Date: Exp. No – 6

ALPs (8086) for sorting and searching

 (A) Sorting a string in an ascending order

AIM: To sort the given string in an ascending order.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign code segment.

4. Initialize DS register with the starting address of data segment.

5. Specify the count value for external loop in DL register.

6. Move the offset address of array into SI register.

7. Move the value of DL register into CL register.

8. Move the content of SI register into the AL register.

9. Compare the number in AL register with subsequent number and exchange the position of the

 numbers depending on result of the comparison.

10. Repeat step7 until the value present in CL register is Zero.

11. Repeat the steps 5, 6,7and 8 until the DL becomes Zero and observe the results in ascending

 order.

12. Terminate the program by using break Point Interrupt.

13. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 30

PROGRAM:

. MODEL SMALL

. STACK

. DATA

 array db 66H,07H,10H,56H,23H

 count db 04H

. CODE

 MOV AX, @data

 MOV DS, AX

 MOV DL, count

 a4: MOV SI, offset array

 MOV CL, DL

 a3: MOV AL, [SI]

 CMP AL, [SI+1]

 JC a2

 XCHG AL, [SI+1]

 XCHG AL, [SI]

 a2: INC SI

 DEC CL

 JNZ a3

 DEC DL

 JNZ a4

 INT 03H

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 31

(B) Sorting a string in a descending order

AIM: To sort the given string in a descending order.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign code segment.

4. Initialize DS register with the starting address of data segment.

5. Specify the count value for external loop in DL register.

6. Move the offset address of array into SI register.

7. Move the value of DL register into CL register.

8. Move the content of SI into the AL register.

9. Compare the number in AL register with subsequent number and exchange the position of the

 numbers depending on result of the comparison.

10. Repeat step7 until the value present in CL register is Zero.

11. Repeat the steps 5, 6,7and 8 until the DL becomes Zero and observe the results in ascending

 Order.

12. Terminate the program by using break Point Interrupt.

13. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 32

PROGRAM:

. MODEL SMALL

. STACK

. DATA

 array db 66H,07H,10H,56H,23H

 count db 04H

. CODE

 MOV AX, @data

 MOV DS, AX

 MOV DL, count

 a4: MOV SI, offset array

 MOV CL, DL

 a3: MOV AL, [SI]

 CMP AL, [SI+1]

 JNC a2

 XCHG AL, [SI+1]

 XCHG AL, [SI]

 a2: INC SI

 DEC CL

 JNZ a3

 DEC DL

 JNZ a4

 INT 03H

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 33

(C) Smallest number of a given ‘n’ numbers

AIM: To find the smallest number in a given array.

APPARATUS: System with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Move the offset address of array into SI register.

6. Copy the count value into CL register.

7. Move the content of SI register into AL register.

8. Compare the number in AL register with subsequent number and copy the smallest number into

 AL register depending on result of the comparison.

9. Repeat step7 until the value present in CL register is Zero.

10. Terminate the program by using Break Point Interrupt.

11. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 34

PROGRAM:

 . MODEL SMALL

 . STACK

 . DATA

 LIST DB 02h, 09h, 03h, 06h, 08h, 07h

 . CODE

 MOV AX, @DATA

 MOV DS, AX

 MOV SI, OFFSET LIST

 MOV CL, 05h

 MOV AL, [SI]

 UP: INC SI

 CMP AL, [SI]

 JB GO

 MOV AL, [SI]

 GO: DEC CL

 JNZ UP

 INT 03h

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 35

(D) Largest number of a given ‘n’ numbers

AIM: To find the largest number in a given array.

APPARATUS: System with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Move the offset address of array into SI register.

6. Copy the count value into CL register.

7. Move the content of SI register into AL register.

8. Compare the number in AL register with subsequent number and copy the largest number into

 AL register depending on result of the comparison.

9. Repeat step7 until the value present in CL register is Zero.

10. Terminate the program by using Break Point Interrupt.

11. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 36

PROGRAM:

 . MODEL SMALL

 . STACK

 . DATA

 LIST DB 02h, 09h, 03h, 06h, 08h, 07h

 . CODE

 MOV AX, @DATA

 MOV DS, AX

 MOV SI, OFFSET LIST

 MOV CL, 05h

 XOR AX, AX

 MOV AL, [SI]

 UP: INC SI

 CMP AL, [SI]

 JNB GO

 MOV AL, [SI]

 GO: DEC CL

 JNZ UP

 INT 03h

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 37

(E) Search for a given number

AIM: To perform searching for a byte in an array.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the Program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS and ES register with the starting address of data segment.

5. Copy the count value into CL register.

6. Get the offset address of array into DI register and clear the direction flag.

7. Copy the number to be search in AL register and scan repeatedly.

8. If not found display the message BYTE NOT FOUND.

9. If found display the message BYTE FOUND.

10. Terminate the program by using break point interrupt.

11. End

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 38

PROGRAM:

 . MODEL SMALL

 .DATA

 array db 15H,07H,25H,12H

 count db 04H

 stg db „byte found‟,‟$‟

 stg1 db „byte not found‟,‟$‟

 .CODE

 START: MOV AX, @data

 MOV DS, AX

 MOV ES, AX

 MOV DI, offset array

 MOV CL, count

 MOV AL, 76H

 REPNE SCASB

 JZ a2

 MOV AH, 09H

 LEA DX,stg1

 INT 21H

 JMP a3

 a2: MOV AH, 09H

 LEA DX, stg

 INT 21H

 a3: INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 39

Date: Exp. No – 7

Logical Operations

(A) Shift Logical Right

AIM: To perform the shift right operation.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign model to the program.

2. Assign Code segment.

3. Move the data to be shifted into AL register.

3. Specify the number of shift operations to be performed in CL register.

4. Perform shift right operation and observe the result in AL register.

5. Terminate the program by using break point interrupt.

6. End

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 46H

MOV CL, 04H

SHR AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 40

(B) Shift Logical Left

AIM: To perform the shift left operation.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign model to the program.

2. Assign Code segment.

3. Move the data to be shifted into AL register.

4. Specify the number of shift operations to be performed in CL register.

5. Perform shift left operation and observe the result in AL register.

6. Terminate the program by using break point interrupt.

7. End

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 46H

MOV CL, 04H

SHL AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 41

(C) Rotate right without Carry

AIM: To perform the Rotate right without Carry.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign the model to the program.

2. Assign Code segment.

3. Move the data to be shifted into AL register.

4. Specify the number of rotate operations to be performed in CL register.

5. Perform rotate right operation without carry and observe the result in AL register.

6. Terminate the program by using break point interrupt.

7. End

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 68H

MOV CL, 04H

ROR AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 42

(D) Rotate left without Carry

AIM: To perform the Rotate left without Carry.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign model to the program.

2. Assign code segment.

3. Move the data to be shifted into AL register.

3. Specify the number of rotate operations to be performed in CL register.

4. Perform rotate left operation without carry and observe the result in AL register.

5. Terminate the program by using Break point interrupt..

6. End.

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 60H

MOV CL, 04H

ROL AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 43

(E) Rotate right with Carry

AIM: To perform the Rotate right with Carry.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign model to the program.

2. Assign Code segment.

3. Move the data to be shifted into AL register.

4. Specify the number of rotate operations to be performed in CL register.

5. Perform rotate right operation with carry and observe the result in AL register.

6. Terminate the program by using Break point interrupt..

7. End.

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 68H

MOV CL, 04H

RCR AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 44

(F) Rotate left with Carry

AIM: To perform the Rotate left with Carry.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign Model to the program.

2. Assign Code segment.

3. Move the data to be shifted into AL register.

4. Specify the number of rotate operations to be performed in CL register.

5. Perform rotate left operation with carry and observe the result in AL register.

6. Terminate the program by using Break point interrupt..

7. End.

PROGRAM:

. MODEL SMALL

. CODE

MOV AL, 68h

MOV CL, 04h

RCL AL, CL

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 45

(G) Converting packed BCD to Unpacked BCD

AIM: To write an ALP to convert packed BCD number to Unpacked BCD number.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign Model to the program.

2. Assign Code segment.

3. Move the packed data into BL register and count value into CL register.

4. Copy the packed BCD data from BL to AL register.

5. Perform shift left & rotate right operations by the AL with the count specified by CL reg.

6. Copy the lower byte of unpacked BCD data to DL register.

7. Copy the packed BCD data from BL to AL register.

8. Perform shift right operations by the AL with the count specified by CL register.

9. Copy the higher byte of unpacked BCD data to DH register.

10. Terminate the program by using Break point Interrupt.

11. End.

PROGRAM:

. MODEL SMALL

. CODE

MOV BL, 57H

MOV CL, 04H

MOV AL, BL

SHL AL, CL

ROR AL, CL

MOV DL, AL

MOV AL, BL

SHR AL, CL

MOV DH, AL

INT 03H

END

INPUT: BL=57H OUTPUT: DX=0507H

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 46

(H) Converting BCD to ASCII number

AIM: To write an ALP to convert BCD number to ASCII number.

APPARATUS: System with TASM Software

ALGORITHM:

1. Assign Model to the program.

2. Assign Code segment.

3. Move the packed data into BL register and count value into CL register.

4. Copy the packed BCD data from BL to AL register.

5. Perform shift left & rotate right operations by the AL with the count specified by CL register.

6. Copy the lower byte of unpacked BCD data to DL register.

7. Copy the packed BCD data from BL to AL register.

8. Perform shift right operations by the AL with number of times specified by CL register.

9. Copy the higher byte of unpacked BCD data to DH register.

10. Perform XOR operation between DX register and 3030h

11. Terminate the program by using Break point interrupt.

12. End

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 47

PROGRAM:

. MODEL SMALL

. CODE

MOV BL, 57H

MOV CL, 04H

MOV AL, BL

SHL AL, CL

ROR AL, CL

MOV DL, AL

MOV AL, BL

SHR AL, CL

MOV DH, AL

XOR DX, 3030h

INT 03H

END

INPUT: BL=57H

OUTPUT: DX=3537H

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 48

Date: Exp. No –8

ALPs (8086) for String operations

 (A) Move block from one segment to another segment

 AIM: To write an ALP to move the block of data from one segment to another segment.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program.

2. Define the data segment with required variables.

3. Assign Code segment

4. Initialize DS register with the starting address of data segment.

5. Initialize ES register with the starting address of data segment.

6. Copy the number of bytes in the string to CL register.

7. Store the offset addresses of string and string1 into SI and DI registers respectively.

8. Clear the direction flow flag to select the auto increment of offset address.

9. Move the string bytes from source to destination until count becomes zero.

10. Terminate the program by using breakpoint interrupt

11. End

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 49

PROGRAM:

 . MODEL SMALL

 . DATA

 STRING DB ‟SVCET‟,‟$‟

 STRING1 DB 05H DUP (?),‟$‟

 COUNT DB 05H

 . CODE

 MOV AX, @DATA

 MOV DS, AX

 MOV ES, AX

 MOV CL, COUNT

 MOV SI, OFFSET STRING

 MOV DI, OFFSET STRING1

 CLD

 REP MOVSB

 MOV AH, 09H

 LEA DX, STRING1

 INT 21H

 INT 03H

 END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 50

(B) Reverse String

 AIM: To perform the reverse of a string.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Initialize ES register with the starting address of data segment.

6. Copy the number of bytes in the string to CL register.

7. Copy the offset address of STG into SI register and offset address of STG1 into DI register.

8. Clear direction flag for auto increment of offset addresses.

9. Add the SI register with n-1 count value.

10. Copy the string characters in reverse order from source segment to destination segment.

11. Repeat step8 until the count becomes zero in CL register.

12. Terminate the program by using Breakpoint interrupt.

13. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 51

PROGRAM:

.MODEL SMALL

.DATA

STG DB „SVCET‟,‟$‟

STG1 DB 05H DUP (?), „$,

COUNT DB 05H

.CODE

MOV AX, @DATA

MOV DS, AX

MOV ES, AX

MOV CL, COUNT

MOV SI, OFFSET STG

MOV DI, OFFSET STG1

CLD

ADD SI, 04h

 A1: MOVSB

DEC SI

DEC SI

DEC CL

JNZ A1

MOV AH, 09H

LEA DX, STG1

INT 21H

INT 03H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 52

(C) String Comparison:

 AIM: To perform the comparison of strings.

APPARATUS: system with TASM software.

ALGORITHM:

1. Assign Model to the program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Initialize ES register with the starting address of data segment.

6. Copy the number of bytes in the string to CL register.

7. Store the offset address of STG1 & STG2 into SI and DI registers respectively.

8. Select the auto increment of offset addresses using direction flow flag.

9. Compare the string bytes of STG1 with STG2 until all the bytes are equal.(if not it won‟t repeat)

10. Display the result based on comparison.

11. Terminate the program by using breakpoint interrupt.

12. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 53

PROGRAM:

 . MODEL SMALL

 . DATA

 STRG1 DB „SVCET‟,‟$‟

 STRG2 DB „SVPET‟, $‟

 RES DB „STRGS ARE EQUAL‟,‟$‟

 RES1 DB „STRGS ARE NOT EQUAL‟,‟$‟

 COUNT EQU 03H

 . CODE

 MOV AX, @DATA

 MOV DS, AX

 MOV ES, AX

 MOV CL, COUNT

 LEA SI, STRG1

 LEA DI, STRG2

 CLD

 REPE CMPSB

 JNZ A2

 MOV AH, 09H

 LEA DX, RES

 INT 21H

 JMP A1

 A2: MOV AH, 09H

 LEA DX, RES1

 INT 21H

 A1: INT 03H

 END

INPUT1:

INPUT2:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 54

(D) Length of string

 AIM: To write an ALP to find out the length of a given string.

APPARATUS: System with TASM software.

ALGORITHM:

1. Assign Model to the program.

2. Define the data segment with required variables.

3. Assign Code segment.

4. Initialize DS register with the starting address of data segment.

5. Move the value 0AH into AL register. (For accepting a characters from the keyboard and

 attached to a user designated buffer).

6. Load effective address of label byte string in DX register.

7. Use DOS interrupt.(and also DOS command P)

8. Move the value 02H into AL register. (To display a character)

9. Move the length attached to the variable A2 into DL register.

10. Convert the data in DL register to ASCII value by using OR function with 30H.

11. Use DOS interrupt to calculate the length of the given string and display.(and also DOS

 command P)

12. End.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 55

PROGRAM:

. MODEL SMALL

. DATA

S1 LABEL BYTE

LX1 DB 30H

A2 DB?

. CODE

MOV AX, @DATA

MOV DS, AX

MOV AH, 0AH

LEA DX, S1

INT 21H

MOV AH, 02H

MOV DL, A2

OR DL, 30H

INT 21H

END

INPUT:

OUTPUT:

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 56

PART-B

(Minimum 02 experiments to be conducted)

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 57

Date: Exp. No. --1

(A) ALP (8086) for generating ramp waveform using DAC

AIM: To write an ALP to generate a ramp wave form using DAC.

APPARATUS: 1. 8086 Microprocessor kit.

 2. DAC kit.

ALGORITHM:

1. Initialize the 8255 control port with 80h.

3. Copy the initial value as 00h for a ramp wave in AL register.

4. Send 00h through port A to DAC for digital to analog conversion.

5. Increment the content of AL by 1 up to FFh,

6. If the value reaches FFh then again start from 00h.

7. Repeat step 4, 5 & 6 to produce continuous ramp wave.

 Port A Address: 70H

 Port B Address: 72H

 Port C Address: 74H

 Control Port Address: 76H

 Control Word Format of 8255

PROGRAM LOGIC:

 ORG 0400H

 MOV AL, 80H

 OUT 76H, AL

 START: MOV AL, 00H

 BACK: OUT 70H, AL

 INC AL

 CMP AL, FFH

 JBE BACK

 JMP START

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 58

Memory

Address

Op-

Code
Label Mnemonics operands Comments

0400 B0 MOV AL,80H

0401 80

0402 E6 OUT 76H,AL

0403 76

0404 B0 START MOV AL,00H

0405 00

0406 E6 BACK OUT 70H,AL

0407 70

0408 FE INC AL

0409 C0

040A 3C CMP AL,FFH

040B FF

040C 76 JBE BACK (0406)

040D F8

040E EB JMP START (0404)

040F F4

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 59

(B) ALP (8086) for generating Triangular waveform using DAC

AIM: To write an ALP to generate a triangular waveform using DAC.

APPARATUS: 1. 8086 Microprocessor kit.

 2. DAC kit.

ALGORITHM:

1. Initialize the 8255 control port with 80h.

3. Copy the initial value as 00h for a ramp wave in AL register.

4. Send 00h through port A to DAC for digital to analog conversion.

5. Increment the content of AL by 1 up to FFh,

6. If the value reaches FFh then decrement the content of AL by 1 until reaches to 00h.

7. Repeat step 4,5 & 6 to produce continuous triangular wave.

 Port A Address: 70H

 Port B Address: 72H

 Port C Address: 74H

 Control Port Address: 76H

 Control Word Format of 8255

PROGRAM LOGIC:

 ORG 0400H

 MOV AL, 80H

 OUT 76H, AL

 MOV AL, 00H

 BACK1: OUT 70H, AL

 INC AL

 CMP AL, FFH

 JB BACK1

 BACK2: OUT 70H, AL

 DEC AL

 CMP AL, 00H

 JA BACK2

 JMP BACK1

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 60

Memory

Address

Op-

Code
Label Mnemonics Operands Comments

0400 B0 MOV AL,80H

0401 80

0402 E6 OUT 76H,AL

0403 76

0404 B0 START MOV AL,00H

0405 00

0406 E6 BACK1 OUT 70H,AL

0407 70

0408 FE INC AL

0409 C0

040A 3C CMP AL,FFH

040B FF

040C 72 JB BACK (0406)

040D F8

040E E6 BACK2 OUT 70H,AL

040F 70

0410 FE DEC AL

0411 C8

0412 3C CMP AL,00H

0413 00

0414 77 JA BACK2

(040E)

0415 F8

0416 EB JMP BACK1

(0406)

0417 EE

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 61

(C) ALP (8086) for generating stair case wave form using DAC

AIM: To write an ALP to generate a stair case waveform using DAC.

APPARATUS: 1. 8086 Microprocessor kit.

 2. DAC kit.

ALGORITHM:

1. Initialize the 8255 control port with 80h.

3. Copy the initial value as 00h for a staircase wave in AL register.

4. Send 00h through port A to DAC for digital to analog conversion and wait for some delay.

5. Add the content of AL by 33h up to FFh,

6. If the value reaches FFh then wait for some delay and subtract the content of AL by 33h until

 reaches to 00h.

7. Repeat step 4, 5 & 6 to produce continuous triangular wave.

 Port A Address: 70H

 Port B Address: 72H

 Port C Address: 74H

 Control Port Address: 76H

 Control Word Format of 8255

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 62

PROGRAM:

 ORG 0400H

 MOV AL, 80H

 OUT 76H, AL

 MOV AL, 00H

(0406) BACK1: OUT 70H, AL

 CALL DELAY (041E)

 ADD AL, 33H

 CMP AL, FFH

 JB BACK1 (0406)

(0411) BACK2: OUT 70H, AL

 CALL DELAY (041E)

 SUB AL, 33H

 CMP AL, 00H

 JA BACK2 (0411)

 JMP BACK1 (0406)

 (041E) DELAY: MOV BX, 0111H

 (0421) BACK3: DEC BX

 JNZ BACK3 (0421)

 RET

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 63

Date: Exp. No – 2

ALP (8086) for traffic light controller

AIM: To write an ALP for four road cross junction to control the traffic automatically.

APPARATUS: 1. 8086 Microprocessor kit.

 2. Traffic Light Controller board.

ALGORITHM:

1. Initialize the 8255 control port with 80h.

3. Copy the content as 11h into AL and send through port C to stop east & west vehicles with

 Red light ON.

4. Copy the content as 44h into AL and send through port A to allow north & south vehicles with

 Green light ON with particular delay.

5. Copy the content as 22h into AL and send through port A & port C to allow all side vehicles

 with yellow light ON with particular delay.

6. Copy the content as 11h into AL and send through port A to stop north & south vehicles with

 red light ON.

7. Copy the content as 44h into AL and send through port C to allow east & west vehicles with

 Green light ON with particular delay.

8. Copy the content as 22h into AL and send through port A & port C to allow all side vehicles

 with yellow light ON with particular delay.

9. Repeat from step3 to 8 for traffic light controller to perform continuously.

 Port A Address: 70H

 Port B Address: 72H

 Port C Address: 74H

 Control Port Address: 76H

 Control Word Format of 8255

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 64

PA0= RN ; PA1=YN; PA2=GN ;PA4=RS ;PA5=YS ;PA6=GS

PC0= RE ; PC1=YE ;PC2=GE ;PC4=RW ;PC5=YW ;PC6=GW

Consider PA3 & PC3 as 0

PROGRAM:

 ORG 0400H

 MOV AL, 80H

 OUT 76H, AL

BACK (0404): MOV AL, 11H ; RED ONLY

 OUT 74H, AL ; FOR E-W

 MOV AL, 44H ; GREEN ON

 OUT 70H, AL ; FOR N-S

 CALL DELAY1 (042E) ; DELAY

 MOV AL, 22H ; YELLOW ON

 OUT 70H, AL ; ALL

 OUT 74H, AL ; SIDES

 CALL DELAY2 (043B) ; DELAY

 MOV AL, 11H ; RED ON

 OUT 70H, AL ; FOR N-S

 MOV AL, 44H ; GREEN ON

 OUT 74H, AL ; FOR E-W

 CALL DELAY1 (042E)

RN

YN

RE YE GE RS

YS

GS

GN

RW YW GW

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 65

 MOV AL, 22H

 OUT 70H, AL

 OUT 74H, AL

 CALL DELAY2 (042B)

 JMP BACK (0404)

DELAY1 (042E): MOV BX, 000FH

 BACK2 (0431): MOV CX, FFFFH

 BACK1 (0434): DEC CX

 JNZ BACK1 (0434)

 DEC BX

 JNZ BACK2 (0431)

 RET

DELAY2 (043B): MOV BX, 0005H

BACK4 (043E): MOV CX, FFFFH

BACK3 (0441): DEC CX

 JNZ BACK3 (0441)

 DEC BX

 JNZ BACK4 (043E)

 RET

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 66

Date: Exp. No – 3

ALP (8086) for stepper motor control

AIM: To write an ALP to run the stepper motor in anti-clockwise direction continuously.

APPARATUS: 1. 8086 Microprocessor kit.

 2. Stepper Motor control board.

ALGORITHM:

1. Initialize the 8255 control port with 80h.

2. Copy 0Ah into AL register and send to port A then call delay program.

3. Copy 06h into AL register and send to port A then call delay program.

4. Copy 05h into AL register and send to port A then call delay program.

5. Copy 09h into AL register and send to port A then call delay program.

7. Repeat from step3 to step8 for stepper motor to rotate anti-clockwise direction continuously.

Port A Address: 70H

Port B Address: 72H

Port C Address: 74H

Control Port Address: 76H

Control Word Format of 8255

Consider PA4 to PA7 as 0

A2

A1

A4

A3

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 67

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Data output to Port A to run the stepper motor

in anti-clock wise direction 0 0 0 0 A1 A3 A2 A4

0 0 0 0 1 0 1 0 0AH

0 0 0 0 0 1 1 0 06H

0 0 0 0 0 1 0 1 05H

0 0 0 0 1 0 0 1 09H

PROGRAM:

 0400: MOV AL, 80H

 OUT 76, AL

 0404: MOV AL, 0AH

 OUT 70, AL

 CALL 0423H

 MOV AL, 06H

 OUT 70, AL

 CALL 0423H

 MOV AL, 05H

 OUT 70, AL

 CALL 0423H

 MOV AL, 09H

 OUT 70, AL

 CALL 0423H

 JMP 0404H

 0423: MOV CX, 0A0AH

 0426: DEC CX

 JNZ 0426

RET

 INPUT: 0A, 06, 05, 09

OUTPUT: Rotates in anti clock wise direction

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 68

PART-C

(Minimum 03 Experiments to be conducted)

8051 Microcontroller:

Date: Exp. No – 01

a) ALP (8051) to determine the addition of N bytes

AIM: To write an ALP for 8051 to determine the addition of N bytes

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Access the memory location 4000h through DPTR.

2. Copy the number of bytes to be added into R0 register.

3. Move the number zero into R1 register

4. Copy the content of DPTR into A Register.

5. Add the content of A register and R1 register with carry and result is stored in R1 register

6. Increment DPTR content

7. Decrement the register R0 by one if not zero control transfer to step 4

8. Access the memory location 4200h through DPTR

9. Store the result from A register into memory location 4200

9. Terminate the program by using LCALL 0003

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 69

PROGRAM:

 3000: MOV DPTR, #4000

 MOV R0, #05

 MOV R1,#00

 ADDRESS: MOV X A, @DPTR

 ADDC R1, A

 INC DPTR

 DJNZ R0, ADDRESS

 MOV DPTR, #4200

 MOVX @DPTR, A

 LCALL 0003

INPUT: 4000:01

 4001:02

 4002:03

 4003:04

 4004:01

OUTPUT: 4200:0B

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 70

Date: Exp. No – 01

b) ALP (8051) to determine the addition of N bytes

AIM: To write an ALP for 8051 to determine the subtraction of N bytes

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Access the memory location 4000h through DPTR.

2. Copy the number of bytes to be added into R0 register.

3. Move the number zero into R1 register

4. Copy the content of DPTR into A Register.

5. Subtraction the content of A register and R1 register with borrow and result is stored in R1

 Register.

6. Increment DPTR content

7. Decrement the register R0 by one if not zero control transfer to step 4

8. Access the memory location 4200h through DPTR

9. Store the result from A register into memory location 4200

9. Terminate the program by using LCALL 0003

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 71

PROGRAM:

 3000: MOV DPTR, #4000

 MOV R0, #05

 MOV R1,#00

 ADDRESS: MOV X A, @DPTR

 SUBB R1, A

 INC DPTR

 DJNZ R0, ADDRESS

 MOV DPTR, #4200

 MOVX @DPTR, A

 LCALL 0003

INPUT: 4000:01

 4001:02

 4002:03

 4003:04

 4004:01

OUTPUT: 4200:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 72

Date: Exp. No – 02

A) ALP (8051) to determine the largest of N bytes

AIM: To write an ALP for 8051 to determine the largest of n-bytes.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Access the memory location 4000h through DPTR and copy the content into A register.

2. Copy the number bytes in an array into R0 register.

3. Copy the content of A register into F0 Register.

4. Increment DPTR to access next memory location.

5. Decrement the count value in R0 and increment DPTR to copy the next byte into A register.

6. Compare the content of A and F0 register if not equal control transfer to new location.

7. Short jump to another location.

8. If carry is set then increment the DPTR. If not copy the content of A to F0 register.

9. Repeat from step 5 until R0 becomes zero.

10. Copy the largest value into A register from F0.

11. Copy the output memory location into DPTR 4200.

12. Copy the largest value from A to memory location.

13. Terminate the program by using LCALL 0003.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 73

PROGRAM:

 3000: MOV DPTR, #4000

 MOV R0, #05

 MOVX A, @DPTR

 MOV 0F0, A

 INC DPTR

 DEC R0

 300A: MOVX A, @DPTR

 CJNE A, 0F0, 3010

 SJMP 3014

 JC 3014

 MOV 0F0, A

 3014: INC DPTR

 DJNZ R0, 300A

 MOV A, 0F0

 MOV DPTR, #4200

 MOV @DPTR, A

 LCALL 0003

INPUT: 4000: 05

 4001: 02

 4002: 07

 4003: 04

 4004: 01

OUTPUT: 4200: 07

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 74

Date: Exp. No – 02

B) ALP (8051) to determine the smallest of N bytes

AIM: To write an ALP for 8051 to determine the smallest of n-bytes.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Access the initial memory location 4000h through DPTR and copy the content into A register.

2. Copy the number bytes in an array into R0 register.

3. Copy the content of A register into F0 Register.

4. Increment DPTR to access next memory location.

5. Decrement the count value in R0 and increment DPTR to copy the next byte into A register.

6. Compare the content of A and F0 register if not equal control transfer to new location.

7. Short jump to another location.

8. If carry is not set then increment the DPTR. If set copy the content of A to F0 register.

9. Repeat from step 5 until R0 becomes zero.

10. Copy the smallest value into A register from F0.

11. Copy the output memory location into DPTR 4200.

12. Copy the smallest value from A to memory location.

13. Terminate the program by using LCALL 0003.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 75

PROGRAM:

 3000: MOV DPTR, #4000

 MOV R0, #05

 MOVX A, @DPTR

 MOV 0F0, A

 INC DPTR

 DEC R0

 300A: MOVX A, @DPTR

 CJNE A, 0F0, 3010

 SJMP 3014

 JNC 3014

 MOV 0F0, A

 3014: INC DPTR

 DJNZ R0, 300A

 MOV A, 0F0

 MOV DPTR, #4200

 MOVX @DPTR, A

 LCALL 0003

INPUT: 4000: 05

 4001: 02

 4002: 07

 4003: 04

 4004: 01

OUTPUT: 4200: 01

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 76

Date: Exp. No – 3

(A) ALP (8051) to multiply a 16-bit number by an 8-bit number

AIM: To write an ALP (8051) to multiply a 16-bit number by an 8-bit number.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR and copy the LSB of 16-bit number content

 into A register.

3. Copy the least significant byte in multiplicand from A into register R2.

4. Increment DPTR to access next memory location and copy the MSB into R1 through A register.

5. Increment DPTR and copy the 8-bit multiplier in R3 through A register.

6. Initialize the DPTR to store the product of multiplication.

7. Copy the content in R2 to B and perform multiplication between A and B.

7. Store the LSB of product in 4000h and increment DPTR.

8. Copy the content in B to R4 temporarily and R1 into B and R3 into A.

9. Perform the multiplication between A and B then add content of A and R4.

10. Store the next byte of product in 4001 from A and increment DPTR.

11. Copy the content in B to A and perform the addition between 00h and A.

12. Store the last byte of the product in 4002h

13. Terminate the program

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 77

PROGRAM:

 3000: MOV DPTR, #3500

 MOVX A, @ DPTR

 MOV R2, A

 INC DPTR

 MOVX A, @ DPTR

 MOV R1, A

 INC DPTR

 MOVX A, @ DPTR

 MOV R3, A

 MOV DPTR, # 4000

 MOV B, R2

 MUL AB

 MOVX @ DPTR, A

 INC DPTR

 MOV R4, B

 MOV B, R1

 MOV A, R3

 MUL AB

 ADD A, R4

 MOVX @ DPTR, A

 INC DPTR

 MOV A, B

 ADDC A, # 00

 MOVX @ DPTR, A

 LJMP 16A5

INPUT: 3500=03; 3501=00; 3502=02 (0003x02)

OUTPUT: 4000=06; 4001=00; 4002=00 (000006)

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 78

(B) ALP (8051) to find square root of an 8-bit number

AIM: To write an ALP (8051) to find square root of an 8-bit number.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR and copy the 8-bit number into A register.

3. Copy the content A into internal memory location 45H temporarily.

4. Assume initial square root value is 00h and store it in R1 register.

5. Copy the content of R1 to A and A to B then perform the multiplication between A and B.

6. Compare content of A and internal memory location 45H, if equal content of R1 is a square root

 Number and copy into 4000h location through A register.

7. If not equal increment R1 and repeat step6.

8. Terminate the program

9. Stop

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 79

PROGRAM:

 3000: MOV DPTR, #3500

 MOVX A, @ DPTR

 MOV 45H, A

 MOV R1, #00

 3008: MOV A, R1

 MOV B, A

 MUL AB

 CJNE A, 45, 3017

 MOV DPTR, #4000

 MOV A, R1

 MOVX @DPTR, A

 LJMP 16A5

 3017: INC R1

 SJMP 3008

INPUT: 3500=09

OUTPUT: 4000=03

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 80

 Date: Exp. No – 4

(A) ALP (8051) to determine LCM of two 8- bit number

AIM: To write an ALP (8051) to determine LCM of two 8- bit number.

APPARATUS: 8051 Microcontroller kit.

\ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR & copy the one 8-bit number into A register.

3. Copy the content of A intoR1 and increment DPTR.

4. Copy the content of DPTR memory location 3501h into R2 through A register.

5. Copy the content of R1 to internal memory location 10h and R2 into 20h.

6. Copy data in 10h location to A and compare with data in 20h, if equal content in A is the LCM

 and move to 4000h location .

7. If not equal, clear the carry flag and subtract the data in 20h location from A then verify the

 carry flag.

8. If carry not generated , copy the data in 20h to A and add the content of A and R2 then store the

 result in 10h from A and perform step6.

9. If carry generated, copy the data in 10h to A and add the content of A and R1 then store the

 result in 10h location from A and perform step6.

10. Terminate the program

11. Stop

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 81

PROGRAM:

ORG 3000

MOV DPTR, #3500

MOVX A,@DPTR

MOV R1, A

INC DPTR

MOVX A, @DPTR

MOV R2, A

MOV 10, R1

MOV 20, R2

 (300C) BACK: MOV A, 10

CJNE A, 20, AHEAD (3013)

SJMP RESULT (3026)

 (3013) AHEAD: CLR C

SUBB A, 20

JC FORWARD (301F)

MOV A, 20

ADD A, R2

MOV 20, A

SJMP BACK (300C)

(301F) FORWARD: MOV A, 10

ADD A, R1

MOV 10, A

SJMP BACK (300C)

 (3026) RESULT: MOV DPTR, #3600

MOVX @DPTR, A

LJMP 16A5

INPUT1: 3500=02

INPUT2: 3501=04

OUTPUT: 3600=04

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 82

(B) ALP (8051) to determine GCD of two 8- bit numbers

AIM: To write an ALP (8051) to determine GCD of two 8- bit numbers.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR & copy the one 8-bit number into A register.

3. Copy the content of A into 10h internal memory location and increment DPTR.

4. Copy the content of memory location 3501h into 20h internal memory location through A.

5. Copy data in 10h location to A and compare with data in 20h, if equal content in A is the GCD

 and move to 4000h location .

6. If not equal, clear the carry flag and subtract the data in 20h location from A then verify the

 carry flag.

7. If carry not generated, copy the data in A to 10h internal memory location and perform step6.

8. If carry generated, clear carry flag then subtract content of 10h location from A and store the

 result in 20h location through A and perform step6.

9. Terminate the program

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 83

PROGRAM:

ORG 3000H

MOV DPTR, #3500H

MOVX A, @DPTR

MOV 10H, A

INC DPTR

MOVX A, @DPTR

MOV 20H, A

 (300A) BACK: MOV A, 10H

CJNE A, 20H, AHEAD

SJMP RESULT (3023)

 (3011) AHEAD: CLR C

SUBB A, 20H

JNC AHEAD1 (301F)

MOV A, 20H

CLR C

SUBB A, 10H

MOV 20H, A

SJMP BACK (300A)

 (301F) AHEAD1: MOV 10H, A

SJMP BACK (300A)

 (3023) RESULT: MOV DPTR, #3600

MOVX @DPTR, A

LJMP 16A5H

INPUT1: 3500=3CH (60)

INPUT2: 3501= 24H (36)

OUTPUT: 3600= 0CH (12)

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 84

Date: Exp. No – 5

(A) ALP (8051) to generate even numbers

AIM: To write an ALP (8051) to generate even numbers.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR.

3. Copy zero value into R0 register.

4. Copy R0 content into A register.

5. Copy the Value of A register into external memory through DPTR.

6. Increment DPTR.

7. Increment the value of R0 twice.

8. Compare the value of R0 with 08 ;if not equal repeat from step 4.

9. Terminate the program by using LCALL 0003

PROGRAM:

 3000: MOV DPTR, #3500

MOV R0, #00

 BACK: MOV A, R0

MOVX @DPTR, A

INC DPTR

INC R0

INC R0

CJNE R0, #08, BACK

LCALL 0003

INPUT: R0=00

OUTPUT: 3500= 00; 3501=02; 3502= 04; 3502 =06

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 85

Date: Exp. No – 5

(B) ALP (8051) to generate odd numbers

AIM: To write an ALP (8051) to generate odd numbers.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Start

2. Access the memory location 3500h through DPTR.

3. Copy 01 value into R0 register.

4. Copy R0 content into A register.

5. Copy the Value of A register into external memory through DPTR.

6. Increment DPTR.

7. Increment the value of R0 twice.

8. Compare the value of R0 with 09; if not equal repeat from step 4.

9. Terminate the program by using LCALL 0003

PROGRAM:

 3000: MOV DPTR, #3500

MOV R0, #01

 BACK: MOV A, R0

MOVX @DPTR, A

INC DPTR

INC R0

INC R0

CJNE R0, #09, BACK

LCALL 0003

INPUT: R0=01

OUTPUT: 3500= 01; 3501=03; 3502= 05; 3502 =07

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 86

Date: Exp. No – 6

 Timer/Counters in different modes

A) Timer in Mode -0 operation

AIM: To generate a square wave of frequency 1KHz at P1.0 of 8051 using timer 1 in mode 0..

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Program timer 1 in mode 0 by copy the value 00 into TMOD register

2. Clear both timer run bit as well as timer over flow bit.

3. Load 13-bit count value in timer 1 register i.e f1 into TH1 & 13 into TL1

4. Set the timer 1 run bit.

5. Check whether the timer 1 over flow is occurred or not .

6. Send to P1.0 and repeat from step 2

PROGRAM:

 MOV TMOD, #00H; Program timer 1 in mode 0

 4003: CLR TR1

 CLR TF1

 MOV TH1, #0F1H; load 13-bit count N in timer 1 register

 MOV TL1, #13H

 SETB TR1; run timer 1

 400F: MOV C, TF1

 JNC 400F

 MOV C, P1.0

 CPL C

 MOV P1.0, C

 SJMP 4003

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 87

Date: Exp. No – 6

 Timer/Counters in different modes

Timer in Mode -1 operation

AIM: To generate a rectangular wave of frequency 1KHz with a duty cycle of 0.25 at P1.6 of 8051

 using timer 0 in mode 1.

PROGRAM:

 MOV TMOD, #01H; Program timer 0 in mode 1

 NEXT: SETB P1.6

 CLR TR0

 CLR TF0

 MOV TH0, #0FFH; load count N for timer 0 register

 MOV TL0, #1AH

 SETB TR0; run timer 0

 BACK1: MOV C, TF0

 JNC BACK1

 CLR P1.6

 CLR TR0

 CLR TF0

 MOV TH0,#0FDH; Count N2

 MOV TL0,#4DH;for T2

 SETB TR0

 BACK2: MOV C, TF0

 JNC BACK2

 SJMP NEXT

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 88

Date: Exp. No – 6

 Timer/Counters in different modes

B) Timer in Mode -2 operation

AIM: To generate a square wave of frequency 2KHz at P1.3 of 8051 using timer 1(TH0) in mode2.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Program timer 1 in mode 2 by copy the value 20H into TMOD register

2. Clear timer run bit .

3. Load 8-bit count value in timer 1 register i.e 1A into TH1 & 1A into TL1

4. Clear timer 1 overflow bit and Set the timer 1 run bit.

5. Check whether the timer 1 over flow is occurred or not .

6. Send to P1.3 and repeat from step 4

PROGRAM:

 MOV TMOD, #20H; Program timer 1 in mode 2

 CLR TR1

 MOV TH1,#1AH; load 8-bit count value in TH1

 MOV TL1,#1AH; load 8-bit count value in TL1

 BACK1: CLR TF1

 SETB TR1

 BACK2: MOV C, TF1

 JNC BACK2

 MOV C, P1.3

 CPL C

 MOV P1.3, C

 SJMP BACK1

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 89

Date: Exp. No –6

 Timer/Counters in different modes

Timer in Mode -3 operation

AIM: To generate a square wave of frequency 5KHz at P1.5 of 8051 using timer 0(TH0) in mode3.

APPARATUS: 8051 Microcontroller kit.

ALGORITHM:

1. Program timer 0 in mode 3 by copy the value 03H into TMOD register

2. Clear both timer 1 run bit and timer 1 over flow bit.

3. Load 8-bit count value in timer 0 register i.e A4 into TH0

4. Set the timer 1 run bit.

5. Check whether the timer 1 over flow is occurred or not.

6. Send to P1.5 and repeat from step 2

PROGRAM:

 MOV TMOD, #03H; Program timer 0 in mode 3

 BACK1: CLR TR1

 CLR TF1

 MOV TH0,#A4H; load 8-bit count value in TH0

 SETB TR1

 BACK2: MOV C, TF1

 JNC BACK2

 MOV C, P1.5

 CPL C

 MOV P1.5, C

 SJMP BACK1

RESULT:

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 90

I) .Procedure for Execution of Assembly language programs (8086) using TASM

1. Open TASM folder and click on DPMIRES icon and type EDIT to open the editor window.

2. Type the assembly language program and save the program as FILENAME.ASM.

3. Go to file menu and click on exit to move to DOS prompt.

4. Type TASM FILENAME.ASM command to assemble the program.

5. If any errors in the program use EDIT FILENAME.ASM command.

5. Type TLINK FILENAME command to link the file to turbo assembler.

6. Type DEBUG FILENAME.EXE to place the exe file in memory.

7. Type „R‟ in the DOS prompt to see the register contents of 8086.

8. Type „T‟ in the DOS prompt to observe the register contents used in the program ,instruction by

instruction until end of the program.

9. Type „G‟ in the DOS prompt to run the entire program at a time.(if you use INT 03H in

program)

10. To observe the results available in memory locations type E 16-bit address after executing the

program.

II). Procedure for execution of Interfacing programs (8086)

For generating op-codes using assembler:

1. Open the TASM folder and click on DPMIRES icon.

2. Type the DEBUG command to generate op-code for a program.

3. Type „A‟ to assemble the program and type the program.

4. Type „U‟ to un - assemble the program and to see the op-codes.

Interfacing 8086 with peripherals:

1. Switch on the power supply for 8086.

2. Press ENTER on the keyboard.

3. Press „A‟ to enter the program directly on 8086 and then type 0400h and then ENTER.

4. Type the program.

5. Press „G‟ and give the starting address of program and then ENTER.

6. Observe the result on corresponding device.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 91

III). Procedure for 8051 Microcontroller

1. Switch on the power supply and press ENTER on the keyboard.

2. Press „A‟ and then type ASM ORG 3000h then press ENTER.

3. Type the program and then press two times ENTER on keyboard.

4. To give the inputs on memory locations, press „M‟ and type the input address.

5. Give the input values separated by SPACE.

6. Press two times ENTERS.

7. Press G and type the starting address of program then press ENTER to get EXECUTION COMPLETED.

8. Press RESET button & Press M and then type the output memory location to observe the result.

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 92

VIVA QUESTIONS

1. What is meant by .model small?

2. How data segment is assigned in program.

3. How code segment is assigned in program.

4. How stack segment is assigned in program

5. What is the difference between EQU & DB directive.

6. Mention the precautions to take while assigning the data to the variables.

7. What is the function of @?

8. What is the significance of $ at end of the string.

9. Mention the command to link the source file to the assembler.

10. Mention the command to place the machine codes into memory.

11. What happened if any instructions are used after end directive?

12. Define Assembler directive

13. Mention the classification of assembler directives.

14. What is the size of the segments if model small is assign to the program?

15. When the stack segment has to assign in the program.

16. What is the advantage of memory segmentation?

17. What are the data define and storage allocation directives.

18. Mention the significance of start directive

19. What are the rules & regulations for assembler?

20. Which DOS command has to use to verify the data in memory location?

21. Which DOS command has to use to proceed to the interrupt?

22. Which DOS command is used to exit from DOS?

23. What is the difference between DOS & BIOS?

24. Which command is used to verify all the register contents of 8086?

25. What is the function of P command?

26. What is the significance of G command?

27. What is the difference between MUL & I MUL instructions?

28. What is the difference between TEST & AND instructions?

29. What is the significance of CX register in logical instructions?

30. What is the significance of CX register in loop instructions?

Microprocessors and Microcontrollers Lab (20AEC27)

SRI VENKATESWARA COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), CHITTOOR Page 93

31. What is the significance of CX register in string instructions?

32. What is the difference between REP & REPE?

33. What is the function of REP?

34. What is the function of REPE?

35. What is the significance of SI & DI Registers while executing string instructions?

36. What is the function of CLD instruction?

37. 0 to 9 BCD numbers can be represented in ASCII as?

38. To display the string attached to variable which identification number has to load in AH

 Register & which instruction has to use.

39. To accept the characters from keyboard which identification number has to load in AH reg &

 which Instruction has to use.

40. Which instruction has to use to display a character which is stored in DL register in the form of

 ASCII.

41. Source file has to save in the form of ________

42. To interface TLC to 8086 then 8255 the ports of 8255 operates in which mode.

43. To interface Stepper motor to 8086 through 8255, the ports of 8255 operates in which mode.

44. To interface DAC to 8086 through 8255, the ports of 8255 operates in which mode.

45. DAC 0800 gives output in terms of ________

46. Conversion formula for DAC.

47. Which type of addressing is used for ports of 8255?

48. What is the difference between CMP & SUB?

49. What is the forward & backward limit for conditional branch instructions?

50. What is the difference between Microprocessor & microcontroller?

